Name | Type | Description | Possible Values | Default Value |
xVariableName | String | The name of the column with data values to be used for the independent (X) variable. | Any string. | "X" |
yVariableName | String | The name of the column with data values to be used for the dependent (Y) variable. | Any string. | "Y" |
tablewiseExclusion | boolean | Whether all rows of the data table containing a missing value in any column should be excluded from the calculations. | true,false | false |
modelOrder | int | Order of the polynomial to be fit. | 2-8 | 2 |
includeLackOfFit | boolean | Whether to divide the residual sum of squares into lack-of-fit and pure error components. | true,false | false |
selectionMethod | String | Selection method for polynomial terms. | "All", "Forward," "Backward" | "All" |
pToEnter | double | P value to enter coefficient into model. | 0.000001-0.999999 | 0.05 |
pToRemove | double | P value to remove coefficient into model. | 0.000001-0.999999, >= pToEnter | 0.05 |
Name | Description | Arguments | Return Value |
double getAdjustedRSquared() | Returns the adjusted coefficient of determination. | None. | Adjusted R-squared, or missingValueCode if model cannot be fit. |
void getCoefficients(double[1+modelOrder]) | Returns the estimated coefficients. | Double output array. | None. |
void getCooksDistance(double c[n]) | Returns Cook's distance corresponding to each row in the datasource. | Double output array. | None. |
void getDegreesOfFreedom(int df[5]) | Returns the degrees of freedom corresponding to the sums of squares. | Double output array. | None. |
void getDFFITS(double d[n]) | Returns the DFFITS statistic corresponding to each row in the datasource. | Double output array. | None. |
double getDurbinWatson() | Returns the Durbin-Watson statistic. | None. | DW, or missingValueCode if model cannot be fit. |
int getFittedModelOrder() | Returns the order of the fitted model. | None. | Model order. |
double getLackOfFitPValue() | Returns the P-value for lack-of-fit test. | None. | P-value. |
double getLastPValue() | Returns the P-value of the highest order term. | None. | P-value. |
void getLeverages(double h[n]) | Returns the leverage corresponding to each row in the datasource. | Double output array. | None. |
double getLowerConfidenceLimit(double x,double conflevel) | Returns the lower confidence limit for the mean value of Y. | Value of X at which to make prediction, and the percentage confidence. | Lower limit. |
double getLowerPredictionLimit(double x,double meansize,double conflevel) | Returns the lower prediction limit for a new value of Y. | Value of X at which to make prediction,number of observations at X, and the percentage confidence. | Lower limit. |
void getMahalanobisDistance(double c[n]) | Returns the Mahalanobis distance corresponding to each row in the datasource. | Double output array. | None. |
double getMeanAbsoluteError() | Returns the residual mean absolute error. | None. | MAE, or missingValueCode if model cannot be fit. |
double getMeanSquaredError() | Returns the residual mean squared error. | None. | MSE, or missingValueCode if model cannot be fit. |
double getModelPValue() | Returns the P-value for the fitted model. | None. | P-value. |
void getPredictedValues(double p[n]) | Returns the predicted value of Y corresponding to each row in the datasource. | Double output array. | None. |
double getPrediction(double x) | Returns the predicted value of Y. | Value of X at which to make prediction. | Predicted value. |
double getResidualDegreesOfFreedom() | Returns the d.f. for the error term used to estimate the standard errors. | None. | Residual df, or 0 if model cannot be fit. |
void getResiduals(double r[n]) | Returns the residual corresponding to each row in the datasource. | Double output array. | Residual or missingValueCode. |
double getResidualStandardError() | Returns the estimated standard deviation of the residuals. | None. | Standard error of the estimate, or missingValueCode if model cannot be fit. |
double getRSquared() | Returns the coefficient of determination. | None. | R-squared, or missingValueCode if model cannot be fit. |
double getSampleSize() | Returns the number of non-missing data values. | None. | Sample size. |
void getStandardErrors(double[1+modelOrder]) | Returns the coefficient standard errors. | Double output array. | None. |
void getStudentizedResiduals(double s[n]) | Returns the studentized deleted residual corresponding to each row in the datasource. | Double output array. | None. |
void getSumsOfSquares(double ss[5]) | Returns the following sums of squares: total, model, residual, lack-of-fit, pure error. | Double output array. | None. |
double getUpperConfidenceLimit(double x,double conflevel) | Returns the upper confidence limit for the mean value of Y. | Value of X at which to make prediction, and the percentage confidence. | Upper limit. |
double getUpperPredictionLimit(double x,double meansize,double conflevel) | Returns the upper prediction limit for a new value of Y. | Value of X at which to make prediction, number of observations at X, and the percentage confidence. | Upper limit. |
Name | Description |
CooksD | Cook's distance corresponding to each row in the datasource. |
DFFITS | The DFFITS statistic corresponding to each row in the datasource. |
Leverage | The leverage corresponding to each row in the datasource. |
MahalanobisD | The Mahalanobis distance corresponding to each row in the datasource. |
Predicted | The predicted value of Y corresponding to each row in the datasource. |
Residual | The residual corresponding to each row in the datasource. |
SResidual | The studentized deleted residual corresponding to each row in the datasource. |